MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs
نویسندگان
چکیده
The RNA polymerase II mediator complex subunit 12 (MED12) is frequently mutated in human cancers, and loss of MED12 has been shown to induce drug resistance through activation of transforming growth factor-β receptor (TGF-βR) signaling. We identified MED12 as a substrate for coactivator-associated arginine methyltransferase 1 (CARM1). Not only are the expression levels of CARM1 and MED12 positively correlated, but their high expression also predicts better prognosis in human breast cancers after chemotherapy. MED12 was methylated at R1862 and R1912 by CARM1, and mutation of these sites in cell lines resulted in resistance to chemotherapy drugs. Furthermore, we showed that the methylation-dependent drug response mechanism is distinct from activation of TGF-βR signaling, because methylated MED12 potently suppresses p21/WAF1 transcription. Cells defective in MED12 methylation have up-regulated p21 protein, which correlates with poor prognosis in breast cancer patients treated with chemotherapy. Collectively, this study identifies MED12 methylation as a sensor for predicting response to commonly used chemotherapy drugs in human cancers.
منابع مشابه
Idarubicin-bromelain combination sensitizes cancer cells to conventional chemotherapy
Objective(s): The primary cytotoxic effects of anticancer drugs like idarubicin, a chemotherapeutic agent, are not limited to neoplastic cells; they also produce similar effects in normal cells. In this study, we hypothesized that the combination of idarubicin-bromelain could make cancer cells more susceptible to cytotoxicity and genotoxicity.Material...
متن کاملCARM1 Methylates Chromatin Remodeling Factor BAF155 to Enhance Tumor Progression and Metastasis.
Coactivator-associated arginine methyltransferase 1 (CARM1), a coactivator for various cancer-relevant transcription factors, is overexpressed in breast cancer. To elucidate the functions of CARM1 in tumorigenesis, we knocked out CARM1 from several breast cancer cell lines using Zinc-Finger Nuclease technology, which resulted in drastic phenotypic and biochemical changes. The CARM1 KO cell line...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملCross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کاملCross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance
Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...
متن کامل